大语言模型的终极之路
  • 大语言模型的终极之路
  • 更新计划
  • 大语言模型时代的NLP
    • 任务与评测
    • 参考资料
  • 基础知识
    • 负对数似然
    • Transformer
      • Cross Attention
      • 向量流动视角
      • Layer Normalization
      • Attention Block
    • 优化算法
      • 牛顿法
      • 梯度下降
  • 大语言模型
    • 大模型理论
      • Scaling Law
      • The Bitter Lesson
      • 思考,快与慢
    • 模型结构
      • MLP
      • Rotary Embedding
      • RMSNorm
      • Encoder-decoder
      • Decoder-only
      • MOE
      • 常见大模型
        • T5
        • GPT2
        • LLaMA
        • LLaMA 2
        • Mistral
        • GLM
        • Mixture
    • 如何训练一个ChatGPT
    • 微调
      • Instruction Tuning 指令微调
      • Domain Finetune 领域微调
    • 解码
      • 温度采样
      • Beam Search Decoding
  • Prompt 工程
    • Prompt, 一种技术路线
    • Prompt 写作规范
    • In-Context Learning
    • Chain-of-Thought
    • Generate Rather than Read
    • Program-of-Thought
    • Tree-of-Thought
    • 参考资料
  • 知识与幻觉
    • 知识边界
  • 大规模预训练
    • 计算资源消耗
    • Deepspeed
    • Megatron
    • 大规模数据处理
    • CUDA 算子优化
  • 强化学习
    • RLHF
      • RLHF
  • 大模型轻量化
    • 蒸馏
      • 黑盒蒸馏
      • 白盒蒸馏
        • KL 散度
    • 轻量化微调
      • LoRA
    • 量化
    • 剪枝
    • 推理加速
    • 参考资料
  • RAG-大模型检索
    • Page 3
  • 多智能体
    • Page 6
  • 多模态大模型
    • Page 1
  • 大模型安全与鲁棒
由 GitBook 提供支持
在本页
  1. 基础知识
  2. Transformer

向量流动视角

一个decoder-only 的LLM , d_model=768

输入 batch=64,序列长度 512 的序列, 编码后的向量为 [64, 512, 768] QKV的线性网络为 768×768768\times768768×768 编码后的向量乘以QKV以后,维度是 [64, 512, 768] 转变为以下维度:[batch_size, num_heads, 序列长度,head_dim]. [64, 12, 512, 64]. (self.head_dim = d_model // num_heads)

Attention(Q,K,V)=Softmax(QKTdk)V\text{Attention}(Q, K, V) = \text{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) V Attention(Q,K,V)=Softmax(dk​​QKT​)V

QK点乘后的维度为 [64, 12, 512, 512] 再乘以 V ( [64, 12, 512, 64]) 以后, 得到的维度是 [64, 12, 512, 64] 最后放缩为 [64, 512, 768]

上一页Cross Attention下一页Layer Normalization

最后更新于10个月前